
Rosetta Pearls Walter Pachl 3 March 2024

There is a huge collection of programs written in many languages

Available in https://rosettacode.org/wiki/Rosetta_Code

There one can find many REXX programs written by the late Gerard
Schildberger with whom I had many “discussions” regarding the

upward compatibility when going from “classic” REXX to ooRexx.

His programs use several features of REXX no longer supported by
ooRexx such as variable names like $, @, and #, assignments of the

Form x=;, the Upper instruction, etc. The formatting of his programs is
sometimes also strange if not appalling.

It is unfortunate that a newcomer interested in REXX or a professional
trying to reuse such a program are confronted with this (mess).

In the following I shall present a few of these programs pointing at
the problems I see and ways to improve them.

You can start digging for pearls with this link

https://rosettacode.org/wiki/Category:Programming_Tasks

which shows

Let us start with a finger exercise.

https://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/Category:Programming_Tasks

FASTA format

You are encouraged to solve this task according to the task

description, using any language you may know.

In bioinformatics, long character strings are often encoded in a

format called FASTA.

A FASTA file can contain several strings, each identified by a

name marked by a > (greater than) character at the beginning

of the line.

Gerard’s REXX program is

/*REXX program reads a (bio-informational) FASTA file and displays the contents. */

parse arg iFID . /*iFID: the input file to be read. */

if iFID=='' then iFID='FASTA.IN' /*Not specified? Then use the default.*/

name= /*the name of an output file (so far). */

$= /*the value of the output file's stuff.*/

 do while lines(iFID)\==0 /*process the FASTA file contents. */

 x=strip(linein(iFID), 'T') /*read a line (a record) from the file,*/

 /*--------- and strip trailing blanks. */

 if left(x, 1)=='>' then do

 if $\=='' then say name':' $

 name=substr(x, 2)

 $=

 end

 else $=$ || x

 end /*j*/ /* [?] show output of last file used. */

if $\=='' then say name':' $ /*stick a fork in it, we're all done. */

Replacing the $ with d and adding ‘’ to the assignment $=, which is now d=’’ lets me
run this program with ooRexx.

The input file

>Rosetta_Example_1

THERECANBENOSPACE

>Rosetta_Example_2

THERECANBESEVERAL

LINESBUTTHEYALLMUST

BECONCATENATED

Shows this expected output

Rosetta_Example_1: THERECANBENOSPACE

Rosetta_Example_2: THERECANBESEVERALLINESBUTTHEYALLMUSTBECONCATENATED

Notice the very strange indentations!

https://rosettacode.org/wiki/Rosetta_Code:Solve_a_Task
https://en.wikipedia.org/wiki/bioinformatics
https://en.wikipedia.org/wiki/FASTA_format

Ramer-Douglas-Peucker (RDP) line
simplification algorithm
The Ramer–Douglas–Peucker algorithm is a line simplification algorithm for reduc-
ing the number of points used to define its shape.

/*REXX program uses the Ramer-Douglas-Peucker (RDP) line simplification algorithm for*/

/*----------------------------- reducing the number of points used to define its shape. */

parse arg epsilon pts /*obtain optional arguments from the CL*/

if epsilon='' | epsilon="," then epsilon= 1 /*Not specified? Then use the default.*/

if pts='' then pts= '(0,0) (1,0.1) (2,-0.1) (3,5) (4,6) (5,7) (6,8.1) (7,9) (8,9) (9,9)'

pts= space(pts) /*elide all superfluous blanks. */

 say ' error threshold: ' epsilon /*echo the error threshold to the term.*/

 say ' points specified: ' pts /* " " shape points " " " */

$= RDP(pts) /*invoke Ramer-Douglas-Peucker function*/

 say 'points simplified: ' rez($) /*display points with () ---? terminal.*/

exit 0 /*stick a fork in it, we're all done. */

/*--*/

bld: parse arg _; #= words(_); dMax=-#; idx=1; do j=1 for #; @.j= word(_, j); end; return

px: parse arg _; return word(translate(_, , ','), 1) /*obtain the X coörd.*/

py: parse arg _; return word(translate(_, , ','), 2) /* " " Y " */

reb: parse arg a,b,,_; do k=a to b; _= _ @.k; end; return strip(_)

rez: parse arg z,_; do k=1 for words(z); _= _ '('word(z, k)") "; end; return strip(_)

/*--*/

RDP: procedure expose epsilon; call bld space(translate(arg(1), , ')(][}{'))

 L= px(@.#) - px(@.1)

 H= py(@.#) - py(@.1) /* [?] find point IDX with max distance*/

 do i=2 to #-1

 d= abs(H*px(@.i) - L*py(@.i) + px(@.#)*py(@.1) - py(@.#)*px(@.1))

 if d>dMax then do; idx= i; dMax= d

 end

 end /*i*/ /* [?] D is the perpendicular distance*/

 if dMax>epsilon then do; r= RDP(reb(1, idx))

 return subword(r, 1, words(r) - 1) RDP(reb(idx, #))

 end

 return @.1 @.#

dlp: Procedure Expose epsilon

 Parse Arg pl /* list of points as string */

 plc=pl

 Do i=1 By 1 While plc<>'' /* list of points */

 End

 end=i-1 /* points 2 to end must be looked at */

 dmax=0 /* initialize maximum distance */

 index=0

 Do i=2 To end-1

 d=distpg(p.i,p.1,p.end) /* distance of p.i from the base line*/

 If d>dmax Then Do /* largest one so far */

 index=i /* p.index is candidate for survival */

 dmax=d

 End

 End

 If dmax>epsilon Then Do /* significant distance */

 rla=dlp(subword(pl,1,index))

 rlb=dlp(subword(pl,index,end))

 rl=subword(rla,1,words(rla)-1) rlb

 End

 Else /* no point with d>epsilon */

 rl=word(pl,1) word(pl,end)

 Return rl

As part of the presentation I wanted to show how the RDP algorithm works on regular
polygon with 24 corners.
Alas I couldn’t get the DOS screen to the attendants, so here is what you would have
seen.

The radius of the polygon is 60
Rdp24_m 1 is the original line with epsilon=m
Rdp24_m 2 is the simplified line

Below are the pictures produced by this process:
Compute the corners’ coordinates
Invoke rdp to get the simplified pronz´t lisz
Produce an input file fpr ma draw progra,
Invoke rexx draw with that file

Draw a black (S=schwarz) polygon
Show the picture, save it, and sleep fpr 4 seconds
Draw a red polygon

Y S 80.0 0.0 77.3 20.7 69.3 40.0 56.6 56.6 ...
SS 3
Y R 80.0 0.0 56.6 56.6 0.0 80.0 -56.6 56.6 ...

Permutations
=={{header|REXX}}==

This program could be simplified quite a bit if the "things" were just

restricted to numbers (numerals), but that would make it specific to

numbers and not "things" or objects.

Formatted program looks like a landscape
.permSet: procedure expose $. @. between x y; parse arg ?

 if ?>y then do; _= @.1; do j=2 for y-1

 _= _ || between || @.j

 end /*j*/

 say _

 end

 else do q=1 for x /*build the permutation recursively. */

 do k=1 for ?-1; if @.k==$.q then iterate q

 end /*k*/

 @.?= $.q; call .permSet ?+1

 end /*q*/

Running this program works fine with Regina
K:_B\P>regina permrc

123

132

213

231

312

321

But fails with ooRexx

K:_B\P>rexx permrc

 15 *-* @

Error 13 running K:_B\P\permrc.rex line 15: Invalid character in program.

Error 13.1: Incorrect character in program "@" ('40'X).

Other problems are
The use of $ as variable name
Omission of the expression in assignments @.=; sep=
Use of the Upper instruction upper @abcU

These 2 lines
@abc = 'abcdefghijklmnopqrstuvwxyz'; @abcU=@abc; upper @abcU
@abcS = @abcU || @abc; @0abcS= 123456789 || @abcS

Can easily be simplified to

xabc = 'abcdefghijklmnopqrstuvwxyz'
xabcS = 123456789 || translate(xabc)||xabc;

Two years ago
(25 January 2022? Walterpachl talk contribs? m 212,777 bytes +2,632? add ooRexx)
 I rewrote this program and stored it under ooRexx on rosetta,rc (although it uses
no oo feature)
I omitted the feature to separate the elements by a specified string
But added a help function invoked by using a question mark as argument,
Of course, this program uses better variable names.

K:_B\P>rexx perm ?

rexx perm -> Permutations of 1 2 3

rexx perm 2 -> Permutations of 1 2

rexx perm 2 4 -> Permutations of 1 2 3 4 in 2 positions

rexx perm 2 a b c d -> Permutations of a b c d in 2 positions

By default my things are the digits 1 through 9 followed by the letters A through F
followed by the numbers 16, 17, etc, as needed.
Rexx perm 4 14 > p4_14.txt results in this file of 24026 lines:

1 2 3 4
1 2 3 5
...
E D C A
E D C B
24024 Permutations
0.399000 seconds

I’ll come back to this later,

Prime Conspiracy
Prime numbers, it seems, have decided preferences about the final digits of the
primes that immediately follow them.

This conspiracy among prime numbers seems, at first glance, to violate a
longstanding assumption in number theory: that prime numbers behave much like
random numbers.
(original authors from Stanford University): Kannan Soundararajan and Robert
Lemke Oliver

The REXX program uses the Sieve of Eratosthenes to mark the composite numbers
And looks then for the successor of each prime.
Its output starts as follows:

For 1000000 primes used in this study:

digit 1 --? 1 has a count of: 42853, frequency of: 4.2853%.

digit 1 --? 3 has a count of: 77475, frequency of: 7.7475%.

digit 1 --? 7 has a count of: 79453, frequency of: 7.9453%.

digit 1 --? 9 has a count of: 50153, frequency of: 5.0153%.

digit 2 --? 3 has a count of: 1, frequency of: 0.0001%.

etc.

I wrote a little program to show this as a matrix;

Analysis of 1000000 prime numbers shows

i followed by 1 3 5 7 9

1 4.2853% 7.7475% 7.9453% 5.0153%

2 0.0001%

3 5.8255% 3.9668% 0.0001% 7.2828% 7.9358%

5 0.0001%

7 6.4230% 6.8595% 3.9603% 7.7586%

9 8.4596% 6.4371% 5.8130% 4.2843%

Then I tried to run the program for 2000000 prime numbers

i followed by 1 3 5 7 9

1 4.2920% 7.8383% 7.7701% 5.0285%

2 0.0001%

3 5.7801% 4.0007% 0.2619% 7.1285% 7.7660%

5 0.2619%

7 6.3258% 6.7724% 3.9913% 7.8519%

9 8.5310% 6.3258% 5.7896% 4.2846%

And there are suddenly many primes ending with 5!!
The problem is in the estimate for the upper limit used for the sieve of Eratosthenes

H= N* (2**max(4, (w%2+1))) /*used as a rough limit for the sieve. */

np=2000001
i=32052371 largest prime
h=32000000

What would be a better / correct estimate for H?

Happy Numbers
A happy number is defined by the following process:

Starting with any positive integer, replace the number by the sum of the squares of its digits,

and repeat the process until the number equals 1 (where it will stay) or it loops endlessly in a

cycle which does not include 1.

The REXX solution is again strangely formatted and uses @. as variable name.
Replacing @ by, say, a
suffices to run his program, with ooRexx.

/*REXX program computes and displays a specified amount of happy numbers. */

parse arg limit . /*obtain optional argument from the CL.*/

if limit=='' | limit=="," then limit=8 /*Not specified? Then use the default.*/

haps=0 /*count of the happy numbers (so far).*/

 do n=1 while haps<limit; @.=0; q=n /*search the integers starting at unity*/

 do until q==1 /*determine if Q is a happy number.*/

 s=0 /*prepare to add squares of digits. */

 do j=1 for length(q) /*sum the squares of the decimal digits*/

 s=s + substr(q, j, 1) **2 /*add the square of a decimal digit.*/

 end /*j*/

 if @.s then iterate n /*if already summed, Q is unhappy. */

 @.s=1; q=s /*mark the sum as found; try Q sum.*/

 end /*until*/

 say n /*display the number (N is happy). */

 haps=haps+1 /*bump the count of happy numbers. */

 end /*n*/

 /*stick a fork in it, we're all done. */

K:_B\HN>rexx hnrca

 6 *-* @

Error 13 running K:_B\HN\hnrca.rex line 6: Invalid character in program.

Error 13.1: Incorrect character in program "@" ('40'X).

Gerard added a second program that allows to show a range of happy numbers.
It starts off with a cryptic argument analysis-

/*REXX program computes and displays a specified range of happy numbers. */

parse arg L H . /*obtain optional arguments from the CL*/

if L=='' | L=="," then L=8 /*Not specified? Then use the default.*/

if H=='' | H=="," then do; H=L; L=1; end /*use a range for the displaying of #s.*/

 do i=0 to 9; #.i=i**2; end /*i*/ /*build a squared decimal digit table. */

@.=0; @.1=1; !.=@.; !.2=1; !.4=1 /*sparse array: @=happy, !=unhappy. */
haps=0 /*count of the happy numbers (so far).*/

After the ususal replacements (@->a, $->d, etc.) the program loops because of this
little incompatibility: @.=0; @.1=1; !.=@.; is not the same as !.=0, because
ooRexx copies the entite stem.and makes 1 an unhappy number.

https://en.wikipedia.org/wiki/Happy_number

My version of argument analysis, using reasonable variable names, would be

Parse Arg low high /* obtain range of happy numbers */

If low='?' Then Call help

If high='' Then

 Parse Value 1 low With low high

…

help:

 Say 'rexx hno n compute and show the first n happy numbers'

 Say 'rexx hno low high show happy numbers from index low to high'

 Exit

K:_B\HN>rexx hno 8

1 7 10 13 19 23 28 31

31 0.001000

K:_B\HN>rexx hno 1000 1002

6899 6904 6917

6917 0.020000

For this task there is also a program in the ooRexx category created by Rick
McGuire!
It’s beautiful but alas 67% slower for the One Millionth happy number.

K:_B\HN>rexx hno 1000000 1000000

7105849

7105849 81.791000

K:_B\HN>rexx hnrick 1000000

7105849

7105849 136.628000

Temperature Conversion
There are quite a number of temperature scales. For this task we will concentrate on
four of the perhaps best-known ones: Kelvin, Celsius, Fahrenheit, and Rankine.

Task

Write code that accepts a value of kelvin, converts it to values of the three other
scales, and prints the result.

Gerard wrote two programs doing some of and MUCH more than that.

He allows to specify several source temperatures and specific target scales.

Instead of the four scales he supports eight or, in yet another version even 58 (!)
scales

His output looks, for example, like this:

K:_B\TC>rexx tcgso 0 to C,10C to re,88f

--- 0 to C

 -273.15 Celsius

--- 10C to re

 8 Reaumur
--- 88f

 31.11111111 Celsius

 103.33333333 Delisle

 88 Fahrenheit

 304.26111111 kelvins

 10.26666667 Newton
 547.67 Rankine

 24.88888889 Reaumur

 15.7962963 Romer

As usual, two problems are found in his program:
Use of $ as function name and use of the Upper instruction.

Another problem found is this:

K:_B\TC>rexx tcgso -400C To K

--- -400C To K

 -126.85 kelvins

A temperature below absolute zero should not be accepted!

Looking at the program, the processing of the given arguments is again rather cryptic;

/*REXX program converts temperatures for a number (8) of temperature scales. */

numeric digits 120 /*be able to support some huge numbers.*/

parse arg tList /*get the specified temperature list. */

 do until tList='' /*process the list of temperatures. */

 parse var tList x ',' tList /*temps are separated by commas. */

 x= translate(x, '((', "[{") /*support other grouping symbols. */

 x= space(x); parse var x z '(' /*handle any comments (if any). */

https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Degree_Celsius
https://en.wikipedia.org/wiki/Fahrenheit
https://en.wikipedia.org/wiki/Degree_Rankine

 parse upper var z z ' TO ' ! . /*separate the TO option from number.*/

 if !=='' then != 'ALL'; all= !=='ALL' /*allow specification of "TO" opt*/

 if z=='' then call serr "no arguments were specified." /*oops-ay. */

 _= verify(z, '+-.0123456789') /*list of valid numeral/number thingys.*/

 n= z

 if _\==0 then do

 if _==1 then call serr 'illegal temperature:' z

 n= left(z, _ - 1) /*pick off the number (hopefully). */

 u= strip(substr(z, _)) /*pick off the temperature unit. */

 end

 else u= 'k' /*assume kelvin as per task requirement*/

The syntax for each argument in the list is apparently
Number [scale1] [to scale2]
Scale 1 defaults to KELVIN
If to scale2 is omitted, the given temperature is converted to all target scales.
Processing of scales is so sophísticated that this is a valid
Input K:_B\TC>rexx tcgso -10.3degreeskels to degreedescale can be (degree[s]abbrev[s] and
there needn’t be a blank between the number and the scale
the code shows how any known misspelling can be recognized:
when abbrev('CENTIGRADE' , yU) |,

 abbrev('CENTRIGRADE', yU) |, /* 50% misspelled.*/

 abbrev('CETIGRADE' , yU) |, /* 50% misspelled.*/

 abbrev('CENTINGRADE', yU) |,

 abbrev('CENTESIMAL' , yU) |,

 abbrev('CELCIU' , yU) |, /* 82% misspelled.*/

 abbrev('CELCIOU' , yU) |, /* 4% misspelled.*/

 etc.

I have no idea how the percentage of the misspelling is computed!

In the second program one finds expressions for the Dalton temperature

F= 273.15 * pow(273.15 / 273.15, n / 100) * 1.8 - 459.67
 a = (1e||(-digits()%2)-digits()%20) /*minimum number for Dalton temperature*/
eV = (F + 459.67) / 20888.1 /*compute the number of electron volts.*/
If K>a then dalt=(100*ln(k/273.15)/ln(373.15/273.15))
 else dalt='-infinity'

Since Classic REXX has neither logarithm nor power functions, Gerard provides them.
On this page, they are, however, compressed in an unusable block of code

A bug hidden in the conversion program is shown by this test
0 FAHRENHEIT TO DALTON
 -21.5729765 Dalton
-21.5729765 DALTON TO FAHRENHEIT
 32 Fahrenheit
The formula shown above
F= 273.15 * pow(273.15 / 273.15, n / 100) * 1.8 - 459.67

is actually incorrect and should be replaced with

F=pow(e(),(ln(373.15/273.15)*n/100))*9*273.15/5-459.67
Which is the inverse of
dalt=(100*ln(k/273.15)/ln(373.15/273.15))

With all that insight, I rewrote the program to the following “specification”:

K:_B\TC>rexx tcw ?

use as command:

rexx tcw fromtemp [fromscale] [TO toscale | all],...

or as function

tcw(fromtemp [fromscale] [TO toscale])

The output shows the full names of the specified scales

K:_B\TC>rexx tcw -21.5729765 Dalton to f

-21.5729765 Dalton to f

-21.5729765 DALTON TO FAHRENHEIT

 0 Fahrenheit

K:_B\TC>rexx tcw 0 c

0 c

0 CELSIUS TO all

 273.15 Absolute

 51.5000436 Amonton

 3.66666181 Barnsdorf
 0 Beaumuir

 0.49996164 Benart

 5.9999667 Bergen

 0 Brisson

 0 Celsius

 13.4999834 Cimento

The Christmas Puzzle
A friend of mine showed me a puzzle he got for Christmas.
It consists of a frame containing 14 (remember 14?) stones as shown here:
The puzzle was created by Jürgen Reiche, Siebenstein Spiele,

The stones should be rearranged such that each row contains a correct
equation like the one in the last row.
The challenge was to use REXX for finding the solution(s).

Using Rony Flatscher’s JDOR interface I printed myself the puzzle on paper,
cut it into pieces and could start to experiment.

Each row can contain three vertical stones and two horizontal stones,
one vertical stone and three horizontal stones, or even five vertical stones
and one horizontal stone.

I number the 14 stones with 1 to 6 for vertical and 7 to 16 for horizontal
stones.

Step 1

From the permutations of 4 from 14 elements I select those which contain
one vertical stone (numbered 1 to 6)

From the permutations of 5 from 14 elements I select those which contain
three vertical stone (numbered 1 to 6)

Each combination is checked for correct syntax:
Number operator number equal number or
Number equal number operator number
And whether the resulting equation is true.

Step 2

We combine the various rows so that the combination of two correct rows
can be used at the bottom or on top of the solution.

Step 3

We look for combinations of the results from step 2 that click together,

Of course, I tested the programs by starting with valid solutions, cutting
them into 6+8 pieces, and running the programs.

Some "Solutions"

92/4=23 17+4=21

21=17+4 11=22/2

16*3=48 27-4=23

56-55=1 33*3=99

Some ways to cut them into pieces

12aabb5 1778899 1778899 1778845

1267745 13aa456 13aa4bb 1399645

996cc43 23bb456 23cc456 23aa6bb

88ddee3 2ccddee 2ddee56 2ccddee

Everything worked nicely!

Unfortunately, this splendid process did not find a solution for the given
puzzle.

So I wrote an email to the puzzle’s creator asking for a statement that the
puzzle can be solved and, if possible, the solution.
Hours later I got a mail with the solution and the problem was found.
My friend had apparently reverted the original 6= stone to the =9 stone
Shown above.

Note that this is the only stone where this can happen.
When I see numbers that win a Lotto prize on Television,
6 and 9 are, therefore, accompanied by a period.

As to the process described above, the findings are as follows

Step 1 delivers only 2 possible equations with 4 stones:

 o 4

 m 91-6=85

 u

 o 4

 m 6=91-85

 u

 4932 bad syntax
 2436 syntax ok
 1863 equation incorrect
 2 correct equations

Many more (187) possible equations with 4 stones

211968 bad syntax
 87360 syntax ok
 64478 equation incorrect
 187 correct equations

Among them
 o =

 m 57+4=61

 u 6 7

 o

 m 57+4=61

 u 6 72

Among the output from Step 2: these two can be combined to the only solution

57+4=61

6*12=72

 4 1 57+4=61

 click to 6*12=72

 44/11=4

 * = 91-6=85

44/11=4

91-6=85

Thank you for your attention!

Work after the presentation

After the presentation I did what had to be done:
I replaced three of my "pearls" by better code

Here you can see recent changes

https://rosettacode.org/wiki/Special:RecentChanges?hidebots=1&limit=5
0&days=7&enhanced=1&urlversion=2

that's one of my three

 20:01 Prime conspiracy? diffhist +358? Walterpachl talk contribs
(??{{header|REXX}}: rewritten to be readable)

https://rosettacode.org/wiki/FASTA_format#REXX
https://rosettacode.org/wiki/Happy_numbers#REXX
https://rosettacode.org/wiki/Prime_conspiracy#REXX

Here you can view the change log and the changes made

View logs for this page (view abuse log)

Diff selection: Mark the radio buttons of the revisions to compare and hit
enter or the button at the bottom.

Legend: (cur) = difference with latest revision, (prev) = difference with
preceding revision, m = minor edit.

curprev 20:01, 4 March 2024? Walterpachl talk contribs? 140,020 bytes
+358? ??{{header|REXX}}: rewritten to be readable undo

